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ABSTRACT 

Neuropsychiatric diseases are multifaceted 

syndromes with poorly understood neurological 

underpinnings. We have made substantial progress 

in our understanding of the genetic architecture of 

these disorders and the genetic loci involved in 

recent years. This review article discusses previous 

attempts to identify susceptibility genes for 

neuropsychiatric disorders, as well as recent 

progress made through genome-wide association 

studies, copy number variation analyses, and 

exome sequencing, and how these findings can help 

neuroscientists better understand these disorders. 

 

INTRODUCTION 
Schizophrenia (SZ), bipolar disorder 

(BD), major depressive disorder (MDD), and 

attention deficit hyperactivity disorder (ADHD) are 

all frequent neuropsychiatric illnesses that can be 

quite severe. They are not characterised by 

apparent neuropathology, and the underlying 

molecular mechanisms are largely unknown. It is 

known, however, that the majority of 

neuropsychiatric illnesses are at least partly 

heritable, and it has long been hoped that the 

discovery of susceptibility genes could provide 

much-needed insights into their molecular 

aetiology, potentially leading to more 

successfulltreatments. In the last decade, 

technological advancements in genome analysis, 

along with enormous sample numbers, have 

resulted in considerable gains in our understanding 

of the genetic architecture of major 

neuropsychiatric illnesses and the genes that cause 

them. This article will discuss previous attempts to 

identify susceptibility genes for various diseases, 

recent breakthroughs in the area, and future 

directions, as well as how these findings can 

improve neuroscience research. 

Neuropsychiatric diseases are heritable 

For almost a century, it has been 

recognised that mental disease may run in families. 

Twin studies, which compare the rate of trait 

sharing between monozygotic, or identical, twins 

(who share all of their genetic variability) and 

dizygotic twins (who share some of their genetic 

variability), can be used to determine how much of 

this is due to genetic factors rather than familial 

environment (who share half of their genetic 

variability on average). Due to the assumption that 

environmental effects are largely the same for 

monozygotic and dizygotic twins, the difference in 

trait concordance between the two types of twins 

can be used to estimate the trait’s ‘heritability,’ or 

the proportion of trait variance (or disease liability) 

that is due to genetic factors. Due to the assumption 

that environmental effects are largely the same for 

monozygotic and dizygotic twins, the difference in 

trait concordance between the two types of twins 

can be used to estimate the trait’s ‘heritability,’ or 

the proportion of trait variance (or disease liability) 

that is due to genetic factors. Most neuropsychiatric 

illnesses have a significant hereditary component, 

according to twin studies: heritability for SZ, BD, 

and ADHD is between 75 and 80 percent.MDD, on 

the other hand, has a lower but still significant 

heritability of 40%. Various well-replicated 

findings provide a solid empirical framework for 

investigations aimed at identifying genetic 

variations that increase the risk of these illnesses. 

Studies on genetic linkage 

Genetic linkage was one of the first 

methods for discovering genetic risk loci for 

psychiatric diseases. Linkage studies are usually 

done in big families with multiple members who 

are sick, and they are based on the assumption that 

genetic markers within a few million nucleotide 

bases of a disease allele are more likely to be 

inherited with it. Within a family, co-segregation of 

the disease with a certain marker allele implicates 

the chromosomal region where the marker is placed 

in the condition. Linkage studies are best suited for 

Mendelian diseases with one or a few genetic loci 

exerting a strong effect on risk, with considerable 
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success in locating the Huntington’s disease gene 

and those producing Alzheimer’s disease early 

onset variants. However, despite decades of effort, 

linkage studies have failed to reliably identify risk 

loci for prevalent neuropsychiatric illnesses, 

showing that the genetic contribution to these 

disorders does not follow simple monogenic or 

oligogenic models. 

Approaches to cytogenetics that have been 

around for a long time 

Searching for large chromosomal 

abnormalities in affected people was another early 

method for investigating genetic origins of 

neuropsychiatric illnesses. Approximately 7% of 

autism sufferers have cytogenetic abnormalities. 

However, neuropsychiatric illnesses with a less 

evident developmental origin are infrequent. The 

most important finding in this regard is a balanced 

t(1;11)(q42; q14) translocation affecting the DISC1 

gene in a large Scottish family, which co-

segregates with numerous psychiatric symptoms 

(including SZ, BD, and MDD).Despite the fact that 

the discovery of DISC1 sparked a flood of 

neuroscience research, there is no solid evidence 

that DISC1 is a risk gene for neuropsychiatric 

disorder outside of the original family. 

Studies on candidate genes and their 

associations 

The third main way to risk gene discovery 

is by association; the goal here is to find 

susceptibility variants that aren’t sufficient to cause 

the condition on their own, and so avoid detection 

by linkage. The ‘case–control’ study, in which the 

frequency of individual DNA variations is 

compared between people with and without the 

ailment, is the most prevalent design. Ignoring 

technical errors and poor study design, significant 

case–control differences in allele or genotype 

distributions suggest either direct effects of the 

associated allele on susceptibility to the disorder 

(e.g. by changing amino acid sequence or gene 

expression) or a population-wide correlation 

between such a risk allele and the assayed variant 

(a phenomenon known as 'linkage disequilibrium'). 

Due to technological limitations, early research had 

to confine themselves to a small number of variants 

within candidate genes that were chosen based on 

their known biological functions (e.g. genes 

involved in dopamine function as candidates for 

SZ). Although there are numerous reports of 

candidate gene association in the literature, none of 

them are sufficiently reproducible to be deemed 

reliable. In retrospect, the tiny effects on 

susceptibility that are now known to characterise 

frequent risk alleles, the low probability that any 

picked candidate allele is a true risk allele, and 

limited sample sizes can all be blamed for the lack 

of consistency. 

Genome-wide association studies (GWAS) 

In the early 2000s, the introduction of 

genotyping arrays made it possible to genotype 

100,000s of DNA variants, often known as single-

nucleotide polymorphisms (SNPs), in a significant 

number of people at a low cost. At the same time, 

better understanding of linkage disequilibrium 

patterns in the human genome allowed scientists to 

infer (or'impute') genotypes at millions of other 

SNPs, capturing the majority of common DNA 

variation (i.e. variants with population allele 

frequencies > 5%) in each person's genome.As a 

result, genome-wide association studies (GWAS) 

of neuropsychiatric illnesses became conceivable. 

The large sample size and coverage effectively 

address the main limitations of candidate gene 

approaches (bias towards existing hypotheses, low 

probability of selecting a true risk allele from the 

millions present in the genome, low statistical 

power from small sample sizes) and thus allow 

comprehensive and unbiased genome assessments 

that may provide new insights into biology.It is 

now apparent that frequent DNA variants in the 

general population each confer only a minor 

increase in the risk of neuropsychiatric diseases 

(odds ratios of related variants typically 1.1). To 

identify them at a significance threshold that 

controls for testing millions of DNA variations 

(based on 1 million independent tests in a thorough 

GWAS, the generally recognised threshold for 

‘genome-wide significance’ is P 5 108), very high 

sample sizes are necessary. GWAS, on the other 

hand, have shown to be an extremely useful 

technique for discovering these common genetic 

risk factors for complex diseases as sample sizes 

have expanded.International collaborative efforts, 

particularly the Psychiatric Genomics Consortium, 

have accelerated progress in psychiatric genetics 

(PGC). SZ has had the most success to date, with a 

landmark study encompassing 36,989 patients and 

113,075 controls revealing 108 distinct risk loci 

with genome-wide relevance.Previous candidate 

genes involved in glutamate (GRIN2A, GRM3, 

GRIA1, and SRR) and dopamine (DRD2) function, 

as well as calcium channel signalling (CACNA1 C, 

CACNB2, and CACNA1 L) and other unique 

biological processes, have all been implicated with 

the aetiology of SZ. A meta-analysis encompassing 

an additional 11,260 SZ cases and 24,542 controls 

has discovered 50 new SZ risk loci with genome-
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wide significance. While GWAS can reveal genetic 

risk loci, additional functional studies are usually 

needed to confidently identify the susceptibility 

genes that reside within them. The great majority of 

frequent risk mutations for neuropsychiatric 

diseases appear to modify regulatory areas of the 

genome (e.g. binding sites for transcription factors) 

that are hundreds of kilobases (kb) away from the 

genes they regulate. Furthermore, linkage 

disequilibrium makes distinguishing between 

functional risk variations and variants that are 

correlated with them challenging, resulting in 

association signals that frequently span many 

genes.Furthermore, linkage disequilibrium makes 

distinguishing between functional risk variations 

and variants that are correlated with them 

challenging, resulting in association signals that 

frequently span many genes. The association 

between SZ and a broad region at the major 

histocompatibility complex (MHC) locus on 

chromosome 6 has been shown to partly reflect 

structural variation at the complement component 4 

(C4) gene locus, resulting in increased C4A 

expression; for example, functional interrogation of 

GWAS risk loci has already yielded important 

insights; for example, the association between SZ 

and a broad region at the MHC locus on 

chromosome 6 has been shown to partly reflect. 

Using chromosome conformation capture 

technologies, long-range interactions between 

regulatory elements and their target gene(s) can 

also be explored. (Because regulatory elements are 

often cell-specific, a lot of study has gone into 

mapping and characterising them in diverse tissues, 

cell types, and developmental stages, including the 

human brain.These tools may be used to prioritise 

functional variations that underpin GWAS signals 

as well as assess which cell types they are most 

likely to be active in. When studying the biological 

activities of susceptibility genes for 

neuropsychiatric illnesses, neuroscientists should 

use these findings in order to focus on the relevant 

gene transcripts, brain areas, cell types, and 

developmental stages. 

Pleiotropy and polygenic risk scores 

Since the beginning of GWAS, it has been 

clear that common risk loci for psychiatric 

disorders that have been identified at genome-wide 

levels of significance are only the ‘tip of the 

iceberg,’ with thousands of other variants 

conferring weak effects on risk falling short of this 

stringent significance threshold. The International 

Schizophrenia Consortium (2009) provided the first 

evidence for the highly polygenic nature of 

psychiatric disorders, in which the summation into 

a ‘polygenic risk score’ of thousands of DNA 

variants exhibiting at least minimal association 

with SZ was found to account for a significant 

proportion of the risk in an independent SZ 

sample.The amount of liability captured by 

polygenic risk scores is a function of the GWAS 

discovery sample size and the liability to disorders 

captured by SNPs on genotyping arrays, which is 

typically between 30% and 50% of the heritability. 

The approach provides the first quantitative 

biomarker of genetic liability that can be applied to 

any individual independent of psychiatric status, 

despite the fact that the information content and 

predictive power of polygenic risk scores are not 

diagnostically useful. The availability of such a 

biomarker has a variety of potential applications in 

neuroscience, including testing the validity of 

intermediate cognitive, behavioural, and 

neuroanatomical phenotypes for these conditions. 

However, the most widely used application of 

polygenic risk scores to far has been in determining 

the genetic link between neuropsychiatric illnesses. 

Polygenic risk for SZ was found to be 

related with risk for BD, but not non-psychiatric 

diseases, in the first study (International 

Schizophrenia Consortium, 2009), indicating a 

genetic overlap between the two disorders. 

Following research employing risk scores and other 

polygenic approaches have clearly proven 

significant genetic sharing across a wide range of 

psychiatric diseases.SZ, for example, shares a 

shared variation contribution with ADHD, MDD, 

autistic spectrum disorder, obsessive-compulsive 

disorder, and anorexia nervosa, in addition to BD. 

Common genetic variation has provided clear 

evidence for pleiotropic effects in psychiatry, while 

uncommon genetic variation has shown similar 

results. As we’ll see later, uncommon mutations 

that increase the chance of SZ also increase the risk 

of other neurodevelopmental diseases, and 

cognitive function is often impacted even in people 

who don’t have a clinical condition (Kendall et al., 

2017; Stefansson et al., 2014). Pleiotropy should be 

considered by neuroscientists when evaluating 

human endophenotype investigations and 

modelling mutations in animal and cellular systems 

(O’Donovan and Owen, 2016). 

Variants in copy number 

The genetic architecture of 

neuropsychiatric illnesses now contains uncommon 

variants that could have a substantially bigger 

impact on risk, in addition to common variants with 

a moderate effect. Since the 1990s, it has been 
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recognised that patients with velocardiofacial (or 

DiGeorge) syndrome, a disorder caused by 

significant deletions on chromosome 22q11.2, had 

a high risk of SZ (Murphy et al., 1999). These 

deletions, which affect about one in every 4000 

newborns and often affect at least 40 genes, are 

now recognised as the disorder's earliest copy 

number variants (CNVs). CNVs, which are 

commonly characterised as deletions, duplications, 

or insertions bigger than 1 kb, are significantly 

more common in the human genome than 

previously thought, thanks to the discovery of 

genotyping arrays. Rare (population frequencies 

1%) or de novo CNVs occur at a rate more than 

double that of controls in patients with autism and 

SZ, according to genome-wide CNV studies. 

 

 

Exome sequencing 

The last ten years have seen significant 

advancements in sequencing technology, allowing 

for faster and more cost-effective searches for 

uncommon DNA variants (such as point mutations) 

that are not detected by existing SNP genotyping 

arrays. To present, research on mental populations 

has mostly concentrated on sequencing the exome, 

which is the 1% of the genome that encodes 

proteins (i.e. coding exons). This strategy is 

expected to provide three benefits: Exonic 

mutations, for starters, point to specific genes (cf. 

GWAS). Second, the effects of premature stop 

codon mutations on gene function may be predicted 

to a significant extent. Third, specific coding 

alterations that are rare or de novo, like rare CNVs, 

can have a big impact on risk. Rare coding 

mutations are particularly appealing to 

neuroscientists looking to produce new ideas 

because of these advantages.Each person has one 

germline exonic de novo mutation on average. 

People with intellectual disabilities/developmental 

delays have a higher de novo rate than those with 

autism spectrum disorder. Exome sequencing 

studies have revealed an increased abundance of 

very raredisruptive coding mutations in SZ, which 

are spread across many genes  and evidence that 

such variants contribute to BD. The rarity of 

individual mutations, as well as their wide 

dispersion, has necessitated the use of very large 

sample numbers to identify specific genes, similar 

to pathogenic CNVs. This approach has yielded for 

autism spectrum disorder (De Rubeis et al., 2014; 

Sanders et al., 2015), and it is now yielding for SZ, 

where a recent analysis of exome sequencing from 

4264 SZ cases, 9343 controls, and 1077 SZ parent–

proband trios revealed a genome-wide significant 

association between the disorder and rare loss-of-

function variants in the SETD1A gene, which 

encodes a histone methyltransfer. As we progress 

toward whole genome sequencing in 

neuropsychiatric illnesses, higher sample sizes and 

a better understanding of non-coding areas of the 

genome will be necessary. 

Pathway analyses 

Given the difficulty of identifying 

individual genes in neuropsychiatric illnesses, 

testing the extent to which identified risk variants 

converge on established biological processes is a 

complementary and possibly extremely revealing 

method. CNVs linked to SZ, for example, have 

been found to be enriched for genes encoding 

components of the NMDA and GABAA receptor 

complexes. Pathway analyses of minor de novo 

mutations detected in patients by exome 

sequencing and of common variation revealed 

using GWAS, which show specific enrichment at 

gene loci producing post-synaptic proteins, indicate 

the relevance of synaptic processes in SZ. Genes 

involved in histone methylation pathways were 

found to be enriched for genetic correlations with 

all three disorders in a pathway analysis of GWAS 

data for SZ, BD, and MDD.Genes involved in 

histone methylation pathways were found to be 

enriched for genetic correlations with all three 

diseases, especially BD, in a pathway analysis of 

GWAS data for SZ, BD, and MDD. A better 

understanding of the genes influenced by genetic 

risk variation, as well as their biological functions, 

will certainly enhance future pathway analysis. 

 

CONCLUSION 
In recent years, significant progress has 

been made in our understanding of the genetics of 

prevalent neuropsychiatric illnesses for which 

neuronal leads have proven elusive. It is now 

known that these illnesses are highly polygenic, 

involving thousands of common and rare genetic 

variants that, when combined with environmental 

risk factors, increase a person’s odds of getting 

them. Many of these risk variations appear to be 

shared among neuropsychiatric diseases as 

well.Both common and unusual genetic risk loci for 

neuropsychiatric illnesses have been found with 

high confidence as sample sizes have expanded. 

GWAS-identified associations between 

neuropsychiatric illnesses and common variations 

appear to be mostly due to regulatory genetic 

variation, which may operate on specific gene 

transcripts, in certain cell types, and at various 
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developmental stages. Rare and de novo CNVs and 

exonic mutations that might result in hemizygous 

loss of gene function may impart higher impacts on 

risk for specific neuropsychiatric disorders, 

particularly those with evident neurodevelopmental 

aspects. Many additional genetic risk loci for 

neuropsychiatric illnesses will be discovered in the 

coming years, thanks to larger sample numbers and 

extensive genotyping by whole genome 

sequencing.Translating these findings into a better 

understanding of the molecular, cellular, and 

neurophysiological mechanisms that underpin 

neuropsychiatric disorders would necessitate the 

collaboration of scientists from several fields of 

neuroscience. 
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